

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	toFeed 0.1 documentation

 [image: _images/logo.png]
toFeed aims to provide syndication feeds for websites that don’t.

Introduction

What toFeed does at its core is scraping websites, converting the gathered data into
syndication feed formats, such as RSS or Atom, and exposing the generated feeds
to news aggregators through a web service. It grew out of my desire to be able
to immediately see news from sites I regularly visit and filter them according
to my own preferences.

toFeed relies on third-party modules such as BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/], Jinja2 [http://jinja.pocoo.org/] and Flask [http://flask.pocoo.org/] to
scrape the websites and generate as well as expose the feeds. Of course that doesn’t mean
that you are limited to these modules, writing your own
adapter is easy and you are free to use whatever modules you
want to do so. The decision to use BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] instead of lxml.html [http://lxml.de/lxmlhtml.html] was
primarily made to avoid binary dependencies which would make the package less portable and harder to
install for end users. Another reason was that I’m simply more familiar and
comfortable working with BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/].

Usage

You can either run toFeed locally on your own PC or externally on a server. It
is recommended to use virtualenv [https://pypi.python.org/pypi/virtualenv] in either case.

If you are planning on running toFeed locally, simply execute the main module
and the toFeed service should start running on your localhost and expose the
routes to your adapters from there.

Alternatively, if you are interested in setting up an external toFeed instance,
I recommend using Heroku [https://www.heroku.com/], which allows you to do so at no cost at all. Simply
follow their Getting Started with Python on Heroku [https://devcenter.heroku.com/articles/getting-started-with-python] guide from the Declare
process types with Procfile [https://devcenter.heroku.com/articles/getting-started-with-python#declare-process-types-with-procfile] section onwards.

Modules

	Adapters

	Utilities

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, cryzed.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	toFeed 0.1 documentation

Adapters

Adapters are the heart of toFeed. They take care of retrieving, scraping and
generating the syndication feeds for sites you wish to subscribe to.

Adapters can be grouped together in modules. Such a module must contain a
ROUTE top-level constant, which is used as the first part of the URL you
give your news aggregator to retrieve the content. The complete URL is built by
appending the ROUTE class variable of the specific adapter.

For example the built-in adapters include an adapter specific to parsing the
Twitter timeline widget data. In the twitter module the ROUTE equals
twitter and the adapter’s ROUTE class variable equals
timelineWidget. That means this adapter would be reachable at:
twitter/timelineWidget.

Notable also is that it’s the primary adapter of this module, meaning instead of
having to write twitter/timelineWidget, simply using twitter i.e. the
ROUTE of the module itself is sufficient.

When opening a route you can pass in arguments and keyword arguments which the
adapters can use to implement certain functionality, for example limiting the
title length of feed items. This is simply done via GET parameters. A
?key=value pair would be interpreted as a keyword argument. A key without a
value, i.e. ?test& ... would be a simple positional argument. If an adapter
needs to accept such parameters you need to define them in the constructor.

It is good practice to accept **kwargs in your adapter’s constructor and
forward them to the base adapter’s constructor, this way certain functionality
that makes sense for every adapter can be implemented and utilized. Currently
this is limited to manually setting the cache timeout, e.g.
twitter?cache_timeout=300.

	
class tofeed.adapters.Adapter(cache_timeout='120')

	The base adapter class. Each adapter needs to inherit from this class.

	Variables:	
	ROUTE (str) – The route leading to the adapter; must be set by the inheriting adapter.

	PRIMARY (bool) – If set to True, the adapter will be recognized as the module’s
primary adapter and be directly accessible via the module’s route in
addition to its own route. If this is the case, implementing the
ROUTE class variable is optional.

	CACHE_TIMEOUT (str) – The default time to cache the content returned by the adapter’s
implementation of to_feed().

	Note:	Parameters received by the constructor are strings and must be handled
accordingly.

	Parameters:	cache_timeout (str) – The time to cache the content returned by the adapter’s implementation
of to_feed().

	
to_feed()

	Must be implemented by the inheriting adapter.

	Return type:	str

	Returns:	The generated feed content.

 Copyright 2014, cryzed.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	toFeed 0.1 documentation

Utilities

The utilities package and its modules provide functions and helpers for
transforming the scraped data.

	
tofeed.utilities.shorten_to_title(string, length, separator=' ', appendix='...')

	Use the string to create a human readable title.

The function searches for the last occurrence of the separator string within
the range of the string limited by the length parameter and appends the
appendix.

	Parameters:	
	string (str) – The string to create the title out of

	length (int) – The approximate length of the title. The length is only approximate to
this value, because it’s possible that the next separator string
encountered may lie further ahead.

	separator (str) – The character that separates words in the text. Usually of course a
space, this should only have to be changed in very rare cases.

	appendix (str) – The string to append to the end of the title

	Returns:	The title created from the string

Spoon

Helper functions for modifying BeautifulSoup objects.

	
tofeed.utilities.spoon.absolutize_references(base_url, tag, attributes=['href', 'src'], recursive=True)

	Turns references found within the tag’s attributes absolute.

	Parameters:	
	base_url (str) – The base URL used to absolutize the references

	tag (bs4.element.Tag) – The tag to absolutize references in

	attributes (list) – The attributes containing the URLs that should be made absolute

	recursive (bool) – If true the tag and all its sub tags will be searched, else only the tag
and its direct descendants will be searched.

	
tofeed.utilities.spoon.collapse_tag(tag)

	Replaces the tag’s descendants with their strings.

	Parameters:	tag (bs4.element.Tag) – The tag to collapse.

	
tofeed.utilities.spoon.convert_newlines(tag, recursive=True)

	Replaces newline characters found in the tag’s strings with line break tags.

	Parameters:	
	tag (bs4.element.Tag) – The tag to convert newline characters in.

	recursive (bool) – If true the tag and all its sub tags will be searched, else only the tag
and its direct descendants will be searched.

	
tofeed.utilities.spoon.new_string = <bound method BeautifulSoup.new_string of >

	Shortcut for BeautifulSoup.new_string(). This allows using the bound methods
of the BeautifulSoup class without having to instantiate it manually.

	
tofeed.utilities.spoon.new_tag = <bound method BeautifulSoup.new_tag of >

	Shortcut for BeautifulSoup.new_tag(). This allows using the bound methods
of the BeautifulSoup class without having to instantiate it manually.

	
tofeed.utilities.spoon.replace_string_with_tag(tag, string, replacement, recursive=True)

	Replaces all occurrences of string within the tag’s strings with the
replacement tag.

	Parameters:	
	tag (bs4.element.Tag) – The tag to replace strings in

	string (str) – The string to replace

	bs4.element.Tag replacement (str) – The tag replacing the string

	recursive (bool) – If true the tag and all its sub tags will be searched, else only the tag
and its direct descendants will be searched.

 Copyright 2014, cryzed.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	toFeed 0.1 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tofeed	

 	
 	
 tofeed.adapters	

 	
 	
 tofeed.utilities	

 	
 	
 tofeed.utilities.spoon	

 Copyright 2014, cryzed.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	toFeed 0.1 documentation

Index

 A
 | C
 | N
 | R
 | S
 | T

A

 	

 	absolutize_references() (in module tofeed.utilities.spoon)

 	

 	Adapter (class in tofeed.adapters)

C

 	

 	collapse_tag() (in module tofeed.utilities.spoon)

 	

 	convert_newlines() (in module tofeed.utilities.spoon)

N

 	

 	new_string (in module tofeed.utilities.spoon)

 	

 	new_tag (in module tofeed.utilities.spoon)

R

 	

 	replace_string_with_tag() (in module tofeed.utilities.spoon)

S

 	

 	shorten_to_title() (in module tofeed.utilities)

T

 	

 	to_feed() (tofeed.adapters.Adapter method)

 	tofeed.adapters (module)

 	

 	tofeed.utilities (module)

 	tofeed.utilities.spoon (module)

 Copyright 2014, cryzed.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		toFeed 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, cryzed.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/logo.png
toFeed

_static/up.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_images/logo.png
toFeed

